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A way is suggested of incorporating the exact dynamics of a system into a statistical 
framework which is self-contained for low-order distribution functions. 

KEY W O R D S :  Statistical mechanics; kinetic theory; entropy; nonequilibrium theory; 
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1. I N T R O D U C T I O N  

In trying to predict the evolution of a system consisting of many constituent parts, 
three distinct problems are involved. First, the equations of motion of the constituents 
need to be known; second, their detailed initial state needs to be known; and finally, 
simple approximations valid within a certain range of physical conditions are required. 
Sometimes these problems have become intertwined with one another, possibly 
leading to some obscurity. We will examine the second of these problems, which is in 
many ways the simplest, and in so doing we make extensive use of the concept of  
entropy. Entropy is usually associated with systems in thermodynamic equilibrium 
and when we come to extend the ideas to unsteady conditions care must be taken to 
include the dynamics adequately. It is the concept of  entropy that allows one to work 
only with the low-order distribution functions and yet include the dynamics of the 
system exactly. 

The evolution of low-order distribution functions usually runs into logical 
difficulties because the equations do not form a closed system as is demonstrated by 
the BBGKY hierarchy of equations. The fact that the system may asymptotically tend 
to equilibrium in a determinable way, as has been shown by Prigogine, t7) does not 
really remove this difficulty, and indeed, for "short"  times the closure difficulty 
recurs. What is not always stated explicitly is that there are really two problems. One 
problem is to find some simple way of expressing the dynamics in terms, for instance, 
of  symmetry properties, collective coordinates, quasiparticles, or significant structures. 
The other, quite distinct problem is to find some way of determining a unique detailed 
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initial state for the system when only a knowledge of certain gross features exists. The 
way in which this latter problem can be resolved in an equilibrium theory was first 
suggested by Gibbs, m who derived the canonical distribution of the system by 
maximizing the entropy functional of the distribution function subject to a prescribed 
average energy. More recently, Shannon and Weaver (8) and Jaynes ~3.4) set the theory 
on a firmer basis by showing that, under elementary consistency conditions, there 
exists an essentially unique functional that measures the amount of  uncertainty 
represented by a distribution function. This particular functional we can associate 
with the entropy. 

When we come to consider nonequilibrium situations, the dynamics of the system 
must clearly be taken into account. Previous work, such as that of Hall ~) and Lewis, ~a) 
has used the entropy concept to derive approximate equations of motion for low-order 
distribution functions. This seems to be a misuse of entropy, which is not meant to be 
an approximation technique. Lewis' work is most interesting however, because his 
"principle" goes a long way to explaining the many definitions of entropy in physics 
and it does lead to closed systems of equations for low-order distribution functions. 
In this paper, we extend Lewis' principle so that the dynamics are contained exactly 
but the low-order distribution functions still form a closed system. No attempt is made 
in this paper to obtain approximate solutions. 

2. E X T E N S I O N  O F  L E W I S '  P R I N C I P L E  

For completeness, we begin by outlining Lewis' work, using his notation. Con- 
sider a conservative classical mechanical system having r degrees of freedom and 
characterized by a Hamiltonian H(z),  where z = (q, p) ---= (ql ,..., qi; Pl ,..., P~), the 
q's and p's being generalized coordinates and their conjugate momenta. For certain 
conditions on H, there exists a one-parameter family of solution operators T~ such 
that 2 

z(t)  = Ttz(O), T o --= 1, T ,Tr  = Tt+tl (1) 

Next, we introduce a probability distribution Pt in phase space and a corre- 
sponding probability density w(t, z) such that for every subset A 

Pt(A) = ~ w(t, z) dz (2) 
, 1  A 

is the probability that, at time t, z is in A. Lewis then shows that w satisfies the Liouville 
equation 

ew/8t : (H; w) (3) 

and that the solution of this equation is given by 

w(t, z) = T~w(O, z) (4) 

Lewis uses S instead of T, but here S will be reserved for entropy. 
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The entropy functional of this distribution function has been shown by Shannon and 
Weaver (8) and Jaynes (8,~) to be 

S[w] = - -k  ( w(t, z) In w(t, z) dz (5) 
d 

Suppose we wish to find the evolution of a low-order distribution function such as 
the single-particle distribution function which is defined by 

fl(t, zz) = f w(t, z) dz~ "" dz, (6) 

Lewis' approach is to choose from the many possible w's satisfying Eq. (6) that one 
which will maximize the basic entropy functional given by Eq. (5), which he denotes 
by w[fl]. Then, using Liouville's equation, Lewis shows that 

eA 
= f w,[fl] dz2"'" dz. = a ( (n ;  w[fa]) d z " .  az. (7) 

gt 

and there exists a new entropy functional Sa[f~] defined by 

Sl[f~] = max S[w] = S[w[A]l (8) 

Lewis calls a function such as w or f l  a state function u and assumes that there 
exists a complete description consisting of an equation of motion 

au/Ot = Mu (9) 

and an entropy functional 

s = S[u] (lO) 

Introducing a new state function of the form 

f = Lu (11) 

where L is a linear operator, Lewis special principle is: 

For given f ,  let u[f] be the unique state function that maximizes Eq. (10) subject 
to Eq. (11) and possible other side conditions such as normalization or symmetry 
conditions. Then the equation of motion f o r f i s  

Of/Ot = LMu[f]  (12) 

and its entropy functional is 

Sl[f]  = S[u[f]] (13) 

Applying the principle in this form only leads to the Vlasov equation, however. 
Lewis then suggests that a better description might result if the entropy is maxi- 

mized after a short interval of time T. Letting the solution operator for u be V~, i.e., 

u(t) = V,u(O) (14) 
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he assumes that the equation of motion of f is of the form 

ef/~t ,~ (l/z) L{V,u[f(t)] -- u[f(t)]} (15) 

Lewis general principle is: 

For given f, let u[f] be the unique state function that maximizes Eq. (10) subject 
to Eq. (11) and possibly other side conditions such as normalization or symmetry 
conditions. Then, the equation of motion for f is given by Eq. (15) and its entropy 
functional by Eq. (13). 

With a few extra assumptions, the principle leads to the Boltzmann equation. To 
find better approximations, the principle would presumably have to be refined even 
more. 

Here, it is suggested that the maximization of the entropy functional can be used 
to form closed equations for low-order distribution functions in a unique way. If a 
low-order distribution function or macroscopic parameter is given initially, this 
defines the many possible w's forming an ensemble whose entropy is to assessed and 
from which the one with maximum entropy is to be chosen. It is this distribution 
function that must be used in all later averagings and not the distribution function 
whose entropy is maximized relative to the restrictive conditions (6) at some later 
time t. 

If the restrictive conditions change, as in Lewis' work, then the members of 
the ensemble of w's change. But if we know how the system evolves from zero time, 
some apparently admissible N-particle distribution functions at time t should be 
rejected as not satisfying the initial conditions and this alters the maximum-entropy 
estimate. 

3. GREENS F U N C T I O N  A P P R O A C H  

To make the above formulation more explicit, it is convenient to use a Greens 
function approach. With appropriate boundary conditions, the evolution of each 
possible N-particle distribution function of the system is governed by an equation of 
the form 

w(t, z) = ~ 6(tz  t Ozl) w(Oz ~) clz I (16) 

where G is the N-particle Greens function of the Liouville equation. Suppose that 
the one-particle distribution function f~(0, z) and several macroscopic parameters Pr 
are known initially; then S must be maximized subject to these conditions and to the 
normalizing condition 

f w(t, z) dz ---- 1 (17) 

(Note that knowledge off1 is not sufficient to determine the total energy of the system. 
Using it, we can only calculate the average kinetic energy density, but we cannot deter- 
mine the potential energy density due to the interactions of particles of the system.) 
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Using Lagrange's method of undetermined multipliers and the notation of 
Lewis, (5) we introduce the functional 

  w(o,z)j - l f  w(o,z  z- - I/ - 

(18) 
where 

Q(w, ~) = f ~(zi) w(O, z) az - f ~(zOA(zO dzl (19) 

and/3r are the microscopic operators equivalent to the macroscopic P~, parameters. 
Since w is symmetric, (19) can be rewritten 

Setting ~J/Oo~ = 0 and ~J/afi = 0 yields the averaging equations, while setting 
aJ/Ow = 0 yields the condition 

1 N 
k(1 -}- In w) -- c~ -- Zr/?fl~" -- ~ ~1= A(z~) = 0 (21) 

Rearranging (21) gives the w of maximum entropy w m as 

where A, B~, and r are determined from the equations 

N 

A f exp [ - - ~  BrP,,] 1-[ r = 1  (23a) 
i = 1  

A f Pr exp [ - - ~  B,.Pr] f i  ~(zi)dz = Pr (23b) 
i = l  

A f exp [--~ BrP~.] f i  r "'" dz. = f.(O, z.) (23c) 
i=I 

If the system is of finite extent, then the boundary conditions will be reflected in 
the form of G, as is shown in Morse and Feshback/6) The N-particle distribution 
with the maximum entropy at any later time is thus given by 

w,.(t, z) = f 6(tz I Oz~) w~(O, ~) dzl (24) 

The P~ must form a complete set of macroscopic parameters in the sense that the 
macroscopic state of the sytem must be completely determined by them. If the total 
energy of the system, which we will denote by H, is known, then w,~ takes on a familiar 
form, namely 

wm(t, z) = A exp(--B/t) (25) 
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If the the macroscopic variables or the low-order distribution functions are given 
for an interval of time, the formalism becomes a little more complex. First, as the 
microscopic motion is reversible, we can write 

w(t', z') = f O(t'z'l t"z") w(t", z") dz", t' < t" (26) 

where G is the adjoint Greens function to G and is defined so that 

(~(t'z'[ t"z") = 0 for t' > t" (27) 

Now, we wish to maximize (5) subject to the normalizing condition and to the restrict- 
ing macroscopic conditions, 

f Pr(z') w(t', z') dt' = P~(t'), t' < t (28) 

Using (26) with t" = t, z" = z, 

f f  P~(z') O(t'z'] tz) w(t, z) dz' dz = P~(t'), t' < t (29) 

Now, proceeding as above to find ~/~w and using (27) gives 

co 

In w~.(t, z) + ~ -k ~ f ~r(t') P~(z') ~(t'z'[ tz) dz' dt' = 0 (30) 
~. - r  

where ~ and/3~ are Lagrange's undetermined multipliers, which are calculated by 
substituting the above form of w into the normalizing conditions and Eq. (28). 

Once win(t, z) is known, then all average quantities can be calculated. The above 
theory thus gives a way of determining the most probable evolution of the system 
given only certain coarse averages. The scope of the predictions are thus determined 
by the limits of knowledge, as one might reasonably expect, and yet no knowledge is 
arbitrarily discarded. 

4. A PART ICULAR FORM OF I N T E R A C T I O N  P O T E N T I A L  

In order to proceed further, it is necessary to consider a special form for the 
interaction potential V. We will therefore suppose 

V = ~ V~j(lq~- qjl) (31) 

Taking the only known macroscopic parameter to be total energy H, then, by 
using suitable units, 

n ---- F, ~P? + V (32) 

If f1(0, z0 is also known, then (22) becomes 

N 

win(0, z) = A exp(--BH) H ~(z;) (33) 
i = 1  
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Substituting in (23c), 

q~(zi) exp(--Bpz2/2)/g = fl(O, zi) (34) 

where g is a constant. Substituting for q~ into (33), 

N 
Win(O, Z) - -  Ag  N exp(--BV) 1--[ f (0 ,  zi) (35) 

i=1 

The two-particle distribution function then takes the simple form 

f2(O, za , z2) = exp(--BV~2) f(O, zl) f(O, z2) (36) 

The evolution of the system is given by substituting (35) into (24), and in general no 
simple solution exists. The next step is thus to find suitable ways of approximating the 
Greens function. 

5. C O N C L U S I O N  

In the previous work of Hall (S) and Lewis, (5) the ensemble of N-particle distribu- 
tion functions is chosen so that the members fit the one-particle distribution function 
some infinitesimal or at most some very short time earlier. In this way, the members 
of  the ensemble keep changing as f~ changes and it is not clear how far the statistics 
are blurring out the dynamics rather than genuinely approximating them. 

It has been shown above how a closed equation for the one-particle distribution 
function can be obtained in such a way that, in Jaynes words, it is maximally non- 
commital with regard to missing information, but nevertheless incorporates the 
dynamics of the system exactly. 

The next and far more difficult problem is to find some suitable approximation to 
the N-particle Greens function in order that simple equations for the evolution off~ 
and the macroscopic parameters may be determined. 
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